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ABSTRACT. In the present paper, further results on intuitionistic fuzzy B-algebras are studied, and some new examples are 

constructed. Firstly, several properties of intuitionistic fuzzy subalgebras of B-algebras are investigated. Furthermore, the notion 

of an intuitionistic fuzzy normal is defined, and related properties are investigated. Finally, it is proved that every intuitionistic 

fuzzy normal set in a B-algebra is an intuitionistic fuzzy B-algebra. 
Keywords: B-subalgebra; fuzzy B-algebra; intuitionistic fuzzy B-algebra. 

 

1. INTRODUCTION 

BCK-algebras and BCI-algebras are two classes of abstract 

algebras introduced by Imai and Iséki [1,2].  It is known that 

the class BCK-algebras is a proper subclass of the class 

BCI-algebras. In [3,4], Neggers and Kim introduced a class 

of algebras, called B-algebra, which is related to several 

classes of algebras of interest such as BCK/BCI/BCH-

algebras. In [5], Kim and Yeom introduced the notion of Quo- 

tient B-algebras via fuzzy normal B-algebras. Park and Kim 

[6] studied quadratic B- algebras. Also, Saeid [7] initiated the 

concept of interval-valued fuzzy B-algebras and investigated 

many properties. In [8], Yoon and Kim studied structure of B-

algebras for B-homomorphisms and characterized interesting 

properties. Other related concepts on B-algebras are given in 

[9,10]. In [1], Zadeh introduced the concept of a fuzzy set, 

later on, the generalization of the notion of the fuzzy set has 

been studied and investigated by several researchers. As a 

follow-up, the idea of an “intuitionistic fuzzy set” is first 

introduced by Atanassov [12]. In [8], Jun et al. introduced the 

notion of B-algebras and characterised many properties. Also, 

several related notions based on fuzzy set theory in different 

al- algebras, are given in [13,14,15,16,7,18,19]. Some 

published papers, connected to the present work, are listed 

below. 

• In [20], Jun et al. applied the notion of fuzzy sets to B-

algebras and introduced the notion of fuzzy B-algebras. 

• Neggers and Kim studied a fundamental theorem of B-

homomorphism for B-algebras in [4]. 

• In [21], Saeid initiated the notion of fuzzy topological B-

algebras and studied related properties. 

• In 2011, Senapati et al. represented the concept of fuzzy 

closed ideals of B-algebras 

[22] while in 2012, they also gave the notion of fuzzy B-

subalgebras of B-algebra with respect to t-norm [23]. 

Motivated by a lot of work in this direction, in this 

paper, as a generalization of fuzzy B-algebra, we discuss 

intuitionistic fuzzy theory applied to B-algebras. We 

introduce the notion of intuitionistic fuzzy B-algebras, and 

investigates several properties. We organize this paper as 

follows: In Section 2, some fundamental notions of B-

algebras are presented. In Section 3, the notion of 

intuitionistic fuzzy B-algebras is defined, and related 

properties are investigated with many examples. In the 

last, we discuss the conclusions of this work with some 

future directions. 

2. Preliminaries 

A B-algebra is a nonempty set F with a constant 0 and a binary 

operation “∗” satisfying the following axioms: 

(b1) 0=  

(b2)  =0  

(b3) )0(()(  =  

for all F ,, . A nonempty subset N of a B-algebra 

F is called a B-subalgebra of F if N  for any 

N * . A nonempty subset N of a B-algebra F is 

said to be normal if Nba  )()(  whenever 

N  and Nba  . A nonempty subset N of a 

B-algebra  F is said to be  nonzero normal if  

Nba  )()(  whenever N and 

Nba   for all F  and 

.)0(),0( Fba   Note that any normal subset N 

of a   B-algebra F is   a B-subalgebra of  F, but the converse is 

not true (see [4], Proposition 3.4 and Example 3.5]). A 

nonempty subset N of a B-algebra F is called a (nonzero) 

normal B-subalgebra of F if it is a B-subalgebra which is 

(nonzero) normal.  

Lemma 2.1. [3]  If  F is a B-algebra, then 

))0(0(  =  for all  F  .  

Let F  be a nonempty set.   A map ]1,0[: → F  is 

called a fuzzy set  in F ,  and the complement  of a 

fuzzy set   in F , denoted by Ω , is the fuzzy set 

in F  given by 

Ω )(1)(  −=  for all F .  

An intuitionistic fuzzy set (IFS, for short) X
~

 in a 
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nonempty set F is an object having the form 

}:))(,(),(,{(
~

~~ FX
XX

=   

where the functions ]1,0[:~ → F
X

 and 

]1,0[:~ →F
X

  denote the degree of membership and 

the degree of nonmembership, respectively, and 

.,1))()((0 ~~ F
XX

+   

An IFS }:))(,(),(,{(
~

~~ FX
XX

=    

in F can be identified to an ordered pair )(,( ~~
XX

  in 

FF II    For the sake of simplicity, we shall use the symbol 

)(,(
~

~~
XX

X =  for the IFS 

}:))(,(),(,{(
~

~~ FX
XX

=   

Clearly, every fuzzy set   in F  is an IFS of the form 

).,(   

Definition 2.2.  

Let  ),(
~

~~
XX

X =   and ),(
~

~~
XX

Y = be IFSs in 

F. Then 

(1)  YX
~~

  iff   )()( ~~ 
YX

     and  

)()( ~~ 
YX

   for all  ,F  

(2)   YX
~~

=  iff   YX
~~

  and ,
~~
XY   

(3)   ),,(
~

~~
XX

X =   

(4)   ),,(
~~

~~~~
YXYX

YX  =  

(5)   ),,(
~~

~~~~
YXYX

YX  =  

(6)  ),,(
~

~~
XX

X =  

(7)   ),,(
~

~~
XX

X =  

One can generalize the operations of intersection and union 

in Definition 2.2 to arbitrary family of IFSs as follows: 

Definition 2.3. (C¸oker [24]) Let  JiX :
~

  be an 

arbitrary family of  IFSs  in  F. Then 

     •   

,:))(),(,{(
~

~~ FX
ii XXi =   

     •   

,:))(),(,{(
~

~~ FX
ii XXi =   

3. Intuitionistic fuzzy B-algebras 

In what follows, let F denote a B-algebra unless otherwise 

specified. 

Definition 3.1. [25] An IFS  ),(
~

~~
XX

X =   in F is 

called an intuitionistic fuzzy B-algebra if it satisfies the 

inequalities  

)}(),(min{)( ~~~ 
XXX

  and   

)}(),(max{)( ~~~ 
XXX

  

 for all F .  

Example 3.2.  Let  },,,,,0{ =F  be a set with 

the following table:   

 

  
0     

      

0 0   
        

    0       
  

    
  0   

    

        
0   

  

      
    0   

    
      

  0 

 

Then (F, ∗, 0) is a B-algebra (see [4], Example 3.5). Define 

an IFS ),(
~

~~
XX

X =   in  F  by 

)(1.07.0)()0( ~~~ 
XXX

===  and  

)(5.02.0)()0( ~~~ 
XXX

===
 

for all 

}3,0{\F . Then ),(
~

~~
XX

X =
 

is an 

intuitionistic fuzzy B-algebra. 

Proposition 3.3. Every intuitionistic fuzzy B-algebra 

),(
~

~~
XX

X =  in F satisfies the inequalities 

)()0( ~~ 
YX

   and  )()0( ~~ 
YX

  for all 

.F  

Proof.  Since 0=  for all F , we have 

)()}(),(min{)()0( ~~~~~ 
XXXXX

==  

and 

)()}(),(max{)()0( ~~~~~ 
XXXXX

==  

for all F . 

For any elements   and    of  F,  let us write   n
 

for  )))(((     where  occurs n times. 
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Proposition 3.4. Let an IFS ),(
~

~~
XX

X =  in F  be an 

intuitionistic fuzzy B-algebra and  let Nn . Then, for all 

F , 

(i) )()( ~~ 
X

n

X
 and  

)()( ~~ 
X

n

X


 
where n is odd, 

(ii) )()( ~~ 
X

n

X
= and  

)()( ~~ 
X

n

X
=

 
where n is even. 

Proof.  Let F and assume that n is odd. Then 

12 −= kn  for some positive integer k. Observe that 

)()0()( ~~~ 
XX

n

X
=

 

and 

)()0()( ~~~ 
XX

n

X
=  for all F . 

Suppose that )()( ~
12

~ 
X

k

X
 −

 

and 

)()( ~
12

~ 
X

k

X
−

for a positive integer k. 

Then 

)()( 12
~

1)1(2
~  = +−+ k

X

k

X
 

                                                     

)))(( 12
~  = −k

X
 

                                                    

))0(( 12
~ = −  k

X
   by 

(b1) 

                                            

)( 12
~  = −k

X
          by (b2) 

                    

)(~ 
X

  

and 

 

)()( 12
~

1)1(2
~  = +−+ k

X

k

X     
                                   

)))((( 12
~  = +k

X
 

                                
))0(( 12

~ = −  k

X
  by (b1)

 

                                

)( 12
~  = −k

X
 by (b2) 

                                                 

),(~ 
X

  

which proves (i). Similarly we have the second part. 

Proposition 3.5. If an IFS ),(
~

~~
XX

X =  in F is an 

intuitionistic fuzzy B-algebra, then 

(fB1)   ),()0( ~~ 
XX

  

),()0( ~~ 
XX

   ,F  

 (fB2) 

)},(),(min{))0(( ~~~ 
XXX


  

and    

F
XXX

  )},(),(max{))0(( ~~~

Proof. For any, we have F ,     

),()}(),0(min{))0( ~~~~ 
XXXX

=
   

),()}(),0(max{)0( ~~~~ 
XXXX

=  

)}0(),(min{))0(( ~~~  
XXX

    

                                  )},(),(min{ ~~ 
XX

  

and 

)}0(),(max{))0(( ~~~  
XXX

 

                               )},(),(max{ ~~ 
XX

  

proving the results. 

      Since )0(0  =  (see [9], Lemma 3.5), if 

),(
~

~~
XX

X =
 

 is an intuitionistic fuzzy B-algebra, 

then 

)}0(),0(min{))0(0()( ~~~~  =
XXXX

     

                                               

)0(~ =
X

 

and 

Hence )0()( ~~  =
XX

 and 

)0()( ~~  =
XX

for any .F  

Theorem 3.6. If an IFS ),(
~

~~
XX

X =
  

in F satisfies 

(fB1) and (fB2), then ),(
~

~~
XX

X =  is an intuitionistic 

fuzzy B-algebra. 

Proof. Assume that an IFS ),(
~

~~
XX

X =  in F satisfies 

the conditions (fB1) and (fB2) and let F , . Using 

Lemma 2.1, (fB1) and (fB2), we have 

)))0(0(()( ~~  =
XX

 

              

)}0(),(min{ ~~  
XX

 

     

)},(),(min{ ~~ 
XX


 

and 

)))0(0(()( ~~  =
XX

 

      

)}0(),(max{ ~~  
XX



10 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),35(1),7-12,2023 

January-February 

)}.(),(max{ ~~ 
XX

  

Hence ),(
~

~~
XX

X = is an intuitionistic fuzzy B-

algebra. 

Definition 3.7. An IFS ),(
~

~~
XX

X = in F is said to be 

intuitionistic fuzzy normal if it satisfies the inequalities 

)}(),(min{))()( ~~~ baba
XXX

 

and 

)}(),(max{))()( ~~~ baba
XXX

   

for all Fba  ,,, . If the elements a and b are 

nonzero, then we say that ),(
~

~~
XX

X =  is 

intuitionistic fuzzy nonzero normal 

Example 3.8.  If we define an IFS ),(
~

~~
XX

X =
 

by 

,8.0)()()0( ~~~ === 
XXX

,3.0)()()( ~~~ === 
XXX



,1.0)()()0( ~~~ === 
XXX

and 

6.0)()()( ~~~ === 
XXX


 

in Example 3.2, then 

),(
~

~~
XX

X =
 

is an intuitionistic fuzzy normal set in F. 

Example 3.2.  Let  },,,0{ =F  be a set with the 

following table:   

 

  
0     

  

0 0     
  

    0     

    
  0   

      
  0 

 

Then (F, ∗, 0) is a B-algebra (see [20]). If we define an IFS 

),(
~

~~
XX

X =   in  F  by ,7.0)0(~ =
X

,5.0)(~ = 
X

,3.0)()( ~~ == 
XX

 

4.0)(,2.0)0( ~~ == 
XX

and  

,6.0)()( ~~ == 
XX

 

Then ),(
~

~~
XX

X =
 

is 

an intuitionistic fuzzy normal set in F. 

Theorem 3.10.  Every intuitionistic fuzzy normal set 

),(
~

~~
XX

X = in F is an intuitionistic fuzzy B-algebra. 

Proof. For any F , , we have 

))00()(()( ~~ = 
XX

 

                         

)}0(),0(min{ ~~  
XX

 

      

)},(),(min{ ~~ 
XX

=
 

and 

))0()(()( ~~ = 
XX

 

                    

)}0(),0(max{ ~~  
XX

 

  

)}.(),(max{ ~~ 
XX

=  

Hence ),(
~

~~
XX

X =
 

is an intuitionistic fuzzy B-

algebra. 

  The converse of Theorem 3.10 is not true. For example, the 

intuitionistic fuzzy B-algebra ),(
~

~~
XX

X =  in 

Example 3.2 is not intuitionistic fuzzy normal, since 

)()())()(( ~~~ 
XXX

=   

                                     )}.(),(min{ ~~  = 
XX

 

Definition 3.11. An IFS ),(
~

~~
XX

X =  in F is called an 

intuitionistic fuzzy (nonzero) normal B-algebra if it is an 

intuitionistic fuzzy B-algebra which is intuitionistic fuzzy 

(nonzero) normal. 

Example 3.12. The IFS ),(
~

~~
XX

X =  discussed in 

Examples 3.8 and 3.9 is indeed an intuitionistic fuzzy normal 

B-algebra. 

Proposition 3.13. If an IFS ),(
~

~~
XX

X = ) in F is an 

intuitionistic fuzzy normal B-algebra, then 

)()( ~~  =
XX

and 

)()( ~~  =
XX

 for all F , .  

Proof. Let F , . Then 

)0)(()( ~~ = 
XX

 

    

))()((~  =
X

   

                         

)}(),(min{ ~~  
XX

 

                                

),(~ =
X

 

and 

)0)(()( ~~ = 
XX

 

 

))()((~  =
X
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)}(),(max{ ~~  
XX  

        

)}(),0(max{ ~~  =
XX  

                                 

).(~  =
X  

Interchanging  with   we obtain 

)()( ~~  
XX

and 

),()( ~~  
XX

 which proves the 

proposition. 

Theorem 3.14. If an IFS ),(
~

~~
XX

X = ) in F be an 

intuitionistic fuzzy normal B-algebra. Then the sets 

)}0()(:{: ~~
~ XX

FF
X

==   

 and    

)}0()(:{: ~~
~ XX

FF
X

 ==  

are normal B-subalgebras of F. 

Proof.  It is sufficient to show that 
X

F
~  and 

X
F

~  are 

normal.  Let Fba  ,,,  be  such  that 

,
~
X

F ,
~
X

Fba  ,
~
X

F  and

.
~
X

Fba  Then 

)()0()( ~~~ ba
XXX

== 
 

 and  

)()0()( ~~~ ba
XXX

==  . It follows that 

)}(),(min{))()(( ~~~ baba
XXX

 
     

       

)0(~
X

=  

and 

)}(),(max{))()(( ~~~ baba
XXX

 
 

).0(~
X

=  

Combining Proposition 3.3, we concludes that 

)0())()(( ~~
XX

ba = 
 

and 

).0())()(( ~~
XX

ba  =
 

which shows that 

X
Fba

~
)()(  

 

and 

X
Fba

~
)()(    . This concludes the proof. 
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